Decision support for climate change adaptation under uncertainty

ECCA 2013 Conference Session: Decision-making under uncertainty – Decision support tools

March 18, 2013, Hamburg/Germany

Oliver Gebhardt, Volker Meyer, Miriam Brenck, Bernd Hansjürgens

Outline

- 1. Introduction
- 2. Evaluation methods for decision support
- 3. Decision support tool PRIMATE
- 4. Case study
- 5. Conclusion

1. Introduction

Background

- Initiatives for climate change adaptation not only on strategic level but also increasingly adaptation projects implemented
- Special focus on **existing vulnerabilities** (heavy precipitation, heat)
- Decision makers look for effective and efficient adaptation measures to limit or take advantage of changing climate conditions
- Choice between alternative options involves consideration of manifold criteria, uncertain data, diverging stakeholder interests
- Demand for easy-to-use decision support systems (DSS)
- Increasing number of handbooks, assessment manuals, DSS
- UFZ-Evaluation Guideline and decision support tool PRIMATE (interactive software for Probabilistic Multi-Attribute Evaluation)

1. Introduction

Sequence of the Evaluation & Prioritization Process

1. Introduction

UFZ- Evaluation Guideline

Left column

--> explanation of what to consider during the various steps

Stufe 1: Identifikation der Betroffenheit

Eingrenzen der Problemlage

- → Welcher Problemlage soll mit den Maßnahmen begegnet werden?
- ➔ Welche Schäden sind bereits aufgetreten oder werden im Zuge des Klimawandels erwartet?
- ➔ Welche Sektoren und Gebiete sind betroffen?

1.1 Möglichkeiten der Abschätzung von Betroffenheiten

- Analyse vergangener Schadensereignisse, wie z.B. durch Auswertung der Einsatzprotokolle von Katastrophenschutz, Feuerwehr etc.
- Auswertung bestehender Risiko- und Vulnerabilitätsstudien
- Diskussion der möglichen Betroffenheit durch den Klimawandel mit Fachplanungen in Landkreis und Kommune: Stadtplanung, Bau, Verkehr, Katastrophenschutz, Gesundheit, Forst und Landwirtschaft

Right column

--> exemplification of explanations using a case study

Fallbeispiel Stufe 1

FB Abschätzung der Betroffenheit

- Jena ist in den Sommermonaten, v.a. im Bereich der Stadtmitte, mit dem Problem der Überhitzung konfrontiert
- Geschützte Tallage und umliegende Kalksteinhänge befördern warmes Mikroklima
- Anstieg der Jahresmitteltemperatur um 1,2K in den letzten 100 Jahren
- Vorliegende Klimaprojektionen lassen weitere Verschärfung der thermischen Belastung erwarten
 - Verstärkter Temperaturanstieg projiziert
 - Zunahme der heißen Tage (T_{max} > 30°C) von 10-12 Tage/Jahr auf bis 19-20 Tage/Jahr bis 2050 (STAR, WETTREG2010)

Überhitzungsgefährdung Stadtgebiet Jena auf Basis von Versieglungsgrad, Baustruktur, Globalstrahlung, lokalen und regionalen Windsystemen

Quelle: ThINK (2011): JenKAS-Projekt.

Uni-criterion Approaches, e.g. Cost-Benefit Analysis (CBA)

- Focus on a single objective, e.g. net benefit
- Search for optimal solutions

Multi-criteria Analysis (MCA), e.g. Weighted Sum, Multi-Attribute Utility Theory-Approaches, Outranking Methods

- Accounting for multiple (quantitative or qualitative) criteria simultaneously
- Due to conflicting criteria rather focusing on compromise than on optimal solutions

Weighted sum

- Allocation of weights to the evaluation criteria representing the priorities of the decision maker
- Computation of the weighted sum of the evaluations of every alternative over all criteria
- Ranking of the alternatives on the basis of weighted sum
- No information on conflicting criteria available due to unrestricted compensations between weakly and strongly performing criteria
- No good basis for balanced decisions

Multi-Attribute Utility Theory

- Identification of the decision maker's utility function integrating the different evaluation criteria with her preferences
- Determination of the alternatives' utility values
- Ranking of the alternatives on the basis of the utility values
- Assumptions:
 - utility function of the decision maker ascertainable
 - decisions taken on the basis of this utility function
- Aggregation of utility values allows for unrestricted compensation of weakly and strongly performing criteria

PROMETHEE (Preference Ranking Organisation Method for Enrichment Evaluations)

- Pairwise comparison of all alternatives across all criteria
- Transformation of (pairwise) differences into (pairwise) preference values for each criterion
- Weighted aggregation of all preference values
- Computation of preference flows ("votes" in favor and "votes" against each alternative)
- Ranking of alternatives on the basis of preference flows
- UFZ-DSS PRIMATE CBA, PROMETHEE implemented

- Structuring the decision problem
 - Identification of alternative measures
 A_i={A₁,...,A_m} to be compared
 - Definition of the set of evaluation criteria C_j={C₁,...,C_n}
 - Alternatives (rows) and criteria (columns) form an **evaluation matrix**
 - Specification of the preference function (shape, thresholds) of the decision maker(s) for each criterion
 - Weighting of criteria
- Collection of input data on the performance of the alternatives for each evaluation criterion

- **Pairwise comparison** of all alternatives for each criterion
- Transformation of differences in criteria values into preference values ranging from 0 to 1 using the preference function specified
- Computation of a partial preference matrix for each criterion
- Computation of the total preference matrix (TPM) as weighted sum of the preference matrices of all criteria

	A ₁	A ₂	A ₃	Φ ⁺
\mathbf{A}_1				
A ₂				
A ₃				
Φ				

- Computation of leaving flows

 (≙ line total TPM):
 sum of the preferences of the
 respective alternative to all
 other alternatives
- Computation of entering flows

 (≙ column total of TPM):
 sum of the preferences of all
 other alternatives over the
 respective alternative
- PROMETHEE I: Ranking based on leaving & entering flows

RONMENTAL

RESEARCH – UFZ

3. Decision support tool PRIMATE: Data uncertainty

- **Uncertainty** regarding the alternatives' performance for specific criteria is accounted for **probabilistically** by the use of stochastic preference functions.
- Use of uniform distributions (minimum, maximum value) OR triangular distribution (minimum, most likely, maximum value)
- PRIMATE randomly selects **up to 10.000** values out of the defined range.
- Results of all evaluations are statistically analyzed (arithmetic mean, standard deviation, ranking order) and documented.

3. Decision support tool PRIMATE: Preferences

- Varying preference functions of different decision makers for each criterion are considered simultaneously.
- Weighting of up to 16 criteria and 5 criteria groups for up to 6 decision makers
- Number of weight replicates determined by number of decision makers.
- Results of all evaluations are statistically analyzed (arithmetic mean, standard deviation, ranking order) and documented.

Heat stress reduction

Kosten-Nutzen-Analyse

Multikriterien-Analyse

Heat stress reduction

Rainwater management (percolation, retention, drainage)

Heat stress reduction

Rainwater management (percolation, retention, drainage)

Private flood protection

Heat stress reduction

Rainwater management (percolation, retention, drainage)

Private flood protection

Urban flood protection

Heat stress reduction

Rainwater management (percolation, retention, drainage)

Private flood protection

Urban flood protection

Protection against soil erosion

4. Case study: Background

- Heavy precipitation events in Riestedt (1.430 inhabitants, Saxony-Anhalt) 24.8.2011, 4./5.9.2011, 11.9.2011
- Impacts:
 - Soil degradation at a 60 hectare plot of agricultural crop land,
 - **Damage** of infrastructure, estates, houses due to flooding/mudslide
- Administrative authorities coordinated a working group looking for an effective and efficient bundle of adaptation measures to prevent or limit the impacts of such events in future

Flooding of Riestedt, Plot of agricultural crop land after discharge

Evaluation & Prioritization of Adaptation Measures

4.1 Case study: Vulnerability Assessment

- Increased frequency of occurrence of statistically most extreme precipitation events in Central and South Saxony-Anhalt expected. (CEC 2011)
- Threat of soil erosion due to heavy precipitation for specific plot considered to be very strong. (LAGB2011)

Evaluation & Prioritization of Adaptation Measures

4.2 Case study: Identification of adaptation measures

Cultivation Practices

Compartmentation of the plot & crop rotation

Structuring of the cultivated area

Hedge for soil erosion protection I

Hedge for soil erosion protection II

Protective barrier

Drainage

Transverse ditch (simple) incl. protective barrier

Transverse ditch (fortified) incl. protective barrier

Lengthwise ditch (simple)

Lengthwise ditch (fortified)

Retention areas

Rainwater retention basin (near-natural)

Rainwater retention basin (technical)

Source: Agrar Office AgroWIN

500 m

4.2 Case study: Bundling of adaptation measures

Bundles of adaptation measures	Measures	Description
Bundle I	Compartmentation of the plot & crop rotation	Teilung in 3 Schläge: Hanglängenverkürzung, unterschiedliche Bewirtschaftungsrichtung und Fruchtfolge
"minimum"	Hedge for soil erosion protection I	Heckenpflanzung mit einheimischen Strauchgruppen und Einzelbäumen an der quer zum Hang verlaufenden Schlaggrenze, 1 Gehölz pro 6 m ² , Breite ca. 8 m
	Retention areas	zwei Flächen am Fuße der Abflussbahnen, ca. 1 und 2 ha
	Compartmentation of the plot & crop rotation	Teilung in 3 Schläge: Hanglängenverkürzung, unterschiedliche Bewirtschaftungsrichtung und Fruchtfolge
	Transverse ditch (simple) incl. protective barrier	Graben entlang der Schlaggrenze, Aushub als Wall, profiliert und mit Blühgräsern, Länge ca. 450 m, Querschnittsfläche Graben/Wall ca. 1,5 m ²
Bundle II "near-natural"	Hedge for soil erosion protection II	mehrreihige Schutzhecke parallel zum Quergraben, heterogene Bepflanzung von niedrigen, bodendeckenden Gewächsen bis Bäumen (Heister) mit 14 Prozent Baumanteil, 1 Gehölz pro 1,8 m ² , Breite ca. 12 m
	Lengthwise ditch (simple)	an den Flanken (siehe Abbildung), Länge insgesamt ca. 2250 m, Querschnittsfläche ca. 1,5m ²
	Retention areas	zwei Flächen am Fuße der Abflussbahnen, ca. 1 und 2 ha
	Rainwater retention basin (near-natural)	zwei Regenrückhaltebecken (R) innerhalb der Retentionsflächen in Erdbauweise, R1 ca. 25 m *25 m* 2 m (1250 m³), R2 ca. 35 m *30 m* 2 m (2100 m³)
	Compartmentation of the plot & crop rotation	Teilung in 3 Schläge: Hanglängenverkürzung, unterschiedliche Bewirtschaftungsrichtung und Fruchtfolge
	Transverse ditch (fortified) incl. protective barrier	Graben entlang der Schlaggrenze, Befestigung an der Schnittstelle, Aushub als Wall profiliert und mit Blühgräsern versehen, partielle Befestigung des Walls, Länge ca. 450 m, Querschnittsfläche Graben/Wall ca. 3 m ²
Bundle III "technical"	Lengthwise ditch (fortified)	an den Flanken (siehe Abbildung), an Gefälle/Kurven/ Schnittstellen partiell gepflastert mit Rasengitter bzw. Wasserbaupflaster, Länge insgesamt ca. 2250 m, Querschnittsfläche ca. 3 m ²
	Retention areas	zwei Flächen am Fuße der Abflussbahnen, ca. 1 und 2 ha
	Rainwater retention basin (technical)	zwei ausgebaute (Stahl-/Betonbauweise) Regenrückhaltebecken (R) inklusive technischer Einbauten innerhalb der Retentionsflächen, R1 ca. 25 m *25 m* 2 m (1250 m ³), R2 ca. 35 m *30 m* 2 m (2100 m ³)
	Protective barriers	befestigte Wälle in den Abflussbahnen vor den Retentionsflächen, Querschnittsfläche ca. 2,1 m ²

Evaluation & Prioritization of Adaptation Measures

4.3 Case study: Selection of Evaluation Criteria

Costs

Net present value (discount rate 3% p.a., 100 years)

• Investment costs:

- Compensation for depreciation of land value due to change of use
- Implementation costs of adaptation measures, reinvestment costs (if applicable)

• Running costs:

- Maintenance costs (if applicable)
- Compensation of the leaseholder until the end of the leasing contract
- Increased cultivation costs due to change of cultivation practices

Technical effort of implementation

Time of implementation

Feasibility of implementation (assessment by local politicians, citizens, administrative authorities, owner and leaseholder of the plot)

Benefits

Effectiveness to reduce damage

Time span for measures to be effective

Co-Benefits

4.3 Case study: Selection of Evaluation Method

- Consideration of multiple criteria for evaluating the alternative bundles
- Use of differently scaled evaluation criteria (monetary, other quantitative, qualitative)
- \rightarrow Multi-criteria analysis

Exemplary weighting of criteria for stakeholders involved in the evaluation process

	Criteria			Weights (%)		
		Stakeholder 1	Stakeholder 2	Stakeholder 3	Stakeholder 4	Stakeholder 5
		Owner	Leaseholder	Citizens	Politicians	Authority
1.	Costs	50	40	20	40	30
1.1	Net present value	40	10	20	30	25
1.2	Technical effort	10	20	10	5	15
1.3	Time of implementation	10	30	35	10	5
1.4	Assessment feasibility (politician)	5	0	0	15	10
1.5	Assessment feasibility (citizens)	5	10	30	20	5
1.6	Assessment feasibility (authorities)	0	5	5	10	30
1.7	Assessment feasibility (owner)	20	5	0	5	5
1.8	Assessment feasibility (leaseholder)	10	20	0	5	5
	Sum	100	100	100	100	100
2.	Benefit	50	60	80	60	70
2.1	Effectiveness to reduce damage	60	60	50	50	60
2.2	Time span for measures to be effective	40	30	30	40	10
2.6	Co-Benefits	0	10	20	10	30
	Sum	100	100	100	100	100

Evaluation & Prioritization of Adaptation Measures

4.4 Case study: Data collection

Data sources

- **Consultation of experts from the following sectors**: landscape planning, agriculture, (environmental) geology
- Secondary sources: additional and validating information from databases, consultative bulletins, scientific publications

Evaluation & Prioritization of Adaptation Measures

PRIMATE data mask

cost criteria

benefit criteria

	#	1	2	3	4	5	6	7	8	9	10	11
	Name des Kriteriums	Kostenbarw	technischer	zeitliche Um	Einschätzun	Einschätzun	Einschätzun	Einschätzun	Einschätzun	Wirksamkei	Zeit Eintrete	Zusatzr
	Kurz	KBW	KAT	KUZ	KTKP	КТВ	KTFB	KTFE	KTFN	NW	NWZ	NZ
	Zielsetzung (maX/miN)	N	N	N	N	N	N	N	N	N	N	N
	Einheit											
	Grenzwert Indifferenz	508363	0	0	0	0	0	0	0	0	0	0
	Grenzwert Präferenz	2152523	3	1	1	1	2	1	2	1	2	2
	Unsicherheiten (y/n)	у	n	n	n	n	n	n	n	n	у	n
	Unsicherheiten bearb.	Bearb.	Bearb.	Bearb.	Bearb.	Bearb.	Bearb.	Bearb.	Bearb.	Bearb.	Bearb.	Bearb.
	Werte	1	2	3	4	5	6	7	8	9	10	11
ndloc of	Alternative V1	1.5E+5	2.0E+0	2.0E+0	1.0E+0	1.0E+0	1.0E+0	3.0E+0	1.0E+0	3.0E+0	2.0E+0	2.0E+0
		7 45 .5	3 0E+0	3.0E+0	1.0E+0	1.0E+0	1.0E+0	3.0E+0	3.0E+0	2.0E+0	2.0E+0	1.0E+
nules of	Alternative V2	7.4E+0	3.0L+0	0.02.0								1

Criteria weights - 5 stakeholder groups

Weighting of cost criteria

Weighting of benefit criteria

DM		Name Entscheider	Kurz	NW	NWZ	NZ
1	x	Stakeholder 1	FE	0.6	0.4	0
2	x	Stakeholder 2	FN	0.6	0.3	0.1
3	x	Stakeholder 3	В	0.5	0.3	0.2
4	×	Stakeholder 4	Р	0.5	0.4	0.1
5	×	Stakeholder 5	FB	0.6	0.1	0.3

Weighting of criteria groups

Weighting of all criteria

- **Bundle II** has **highest net flow** considering the preferences of all stakeholders involved in the decision making process.
- The high level of uncertainty can be attributed to the value margins used and the varying stakeholder preferences.

- Bundle II obtains highest net flows, i.e. is preferred by all stakeholders.
- Bundle III is valued higher by all stakeholders than bundle I.

5. Conclusion

UFZ-Evaluation Guideline ...

- supports decision making for climate change adaptation by providing a step-by-step manual describing and illustrating typical evaluation processes.
- focuses on participatory evaluation processes involving stakeholders and decision makers.

5. Conclusion

PRIMATE

- accounts for uncertainty with regard to the performances of the alternatives by offering probabilistic pairwise comparison of alternatives.
- allows for the simultaneous and explicit consideration of the preferences of several decision makers.
- illustrates the effects of varying preferences on the evaluation result and thereby actively supports group decision making processes.
- enhances the transparency of the decision making process.
- facilitates the identification of compromise solutions.

Thank you for your attention!

Exemplary Total Preference Matrix in PRIMATE

		AP	W	BD	BF	BP	VM	VB	VD	F+	-	Leaving
	AP	0	0.422	0.169	0.252	0.310	0.297	0.080	0.453	1.985		flows
medsures —,	W	0.027	0	0.134	0.201	0.184	0.184	0.054	0.241	1.028		
	BD	0.064	0.435	0	0.125	0.218	0.276	0.032	0.375	1.527		
	BF	0.044	0.387	0.025	0	0.140	0.172	0.037	0.292	1.100		
	BP	0.028	0.270	0.029	0.066	0	0.161	0.048	0.249	0.855		
	VM	0	0.254	0.068	0.078	0.159	0	0.054	0.164	0.779		
	VB	0.144	0.487	0.190	0.304	0.367	0.391	0	0.502	2.389		
	VD	0.047	0.202	0.060	0.091	0.145	0.074	0.054	0	0.677		
Entering	F	0.356	2.460	0.678	1.120	1.526	1.560	0.363	2.279			
IIUW5												

Exemplary Total Preference Matrix in PRIMATE

		_									
		AP	W	BD	BF	BP	VM	VB	VD	F+	Leaving flows
Measures	AP	0	0.422	0.169	0.252	0.310	0.297	0.080	0.453	1.985	Rank 2
	W	0.027	0	0.134	0.201	0.184	0.184	0.054	0.241	1.028	Rank 5
	BD	0.064	0.435	0	0.125	0.218	0.276	0.032	0.375	1.527	Rank 3
	BF	0.044	0.387	0.025	0	0.140	0.172	0.037	0.292	1.100	Rank 4
	BP	0.028	0.270	0.029	0.066	0	0.161	0.048	0.249	0.855	Rank 6
	VM	0	0.254	0.068	0.078	0.159	0	0.054	0.164	0.779	Rank 7
	VB	0.144	0.487	0.190	0.304	0.367	0.391	0	0.502	2.389	Rank 1
Entering	VD	0.047	0.202	0.060	0.091	0.145	0.074	0.054	0	0.677	Rank 8
flows	F.	0.356	2.460	0.678	1.120	1.526	1.560	0.363	2.279		
		Rank 1	Rank 8	Rank 3	Rank 4	Rank 5	Rank 6	Rank 2	Rank 7		

• **PROMETHEE I**: Ranking based on leaving flows (F+) & entering (F-) flows

• **PROMETHEE II**: Ranking based on net flows

HELMHOLTZ | CENTRE FOR | ENVIRONMENTAL | RESEARCH – UFZ

Exemplary Total Preference Matrix in PRIMATE

	AP	W	BD	BF	BP	VM	VB	VD	F+
AP	0	0.422	0.169	0.252	0.310	0.297	0.080	0.453	1.985
W	0.027	0	0.134	0.201	0.184	0.184	0.054	0.241	1.028
BD	0.064	0.435	0	0.125	0.218	0.276	0.032	0.375	1.527
BF	0.044	0.387	0.025	0	0.140	0.172	0.037	0.292	1.100
BP	0.028	0.270	0.029	0.066	0	0.161	0.048	0.249	0.855
VМ	0	0.254	0.068	0.078	0.159	0	0.054	0.164	0.779
VB	0.144	0.487	0.190	0.304	0.367	0.391	0	0.502	2.389
VD	0.047	0.202	0.060	0.091	0.145	0.074	0.054	0	0.677
F٠	0.356	2.460	0.678	1.120	1.526	1.560	0.363	2.279	

Rank based on net flows

Rank 2 Rank 7 Rank 3 Rank 4 Rank 5 Rank 6 Rank 1 Rank 8

Net flow 1.629 -1.432 0.849 -0.020 -0.671 -0.781 2.026 -1.602

- **PROMETHEE I**: Ranking based on leaving flows (F+) & entering (F-) flows
- **PROMETHEE II**: Ranking based on net flows

